[17378] 공의 합집합
·
PS | CP/Baekjoon OJ
x축에 타코야끼마냥 중심을 꽂힌 다양한 크기의 구들이 있는데, 이 녀석들의 전체 부피를 구해야 한다. 그런데 서로 겹치는 경우가 생길 수 있기 때문에 그냥 구해서는 안 된다. 뭔가 방법을 써야 한다. 우선 3차원 상황을 그대로 써먹으려고 하면 불편하다. 어차피 문제 상황의 모든 도형이 x축을 중심으로 한 회전체 꼴이기 때문에 2차원 평면 위의 반원들로 차원을 낮추자. 각 공 $S_i = (x - x_i)^2 + y^2 + z^2 \leq r_i^2$들은 이제 $C_i = (x - x_i)^2 + y^2 \leq r_i^2\ (y \geq 0)$으로 생각하자. 그럼 부피는 간단하게 $\displaystyle \pi\int_{a}^{b} y^2dx = \pi\int_{a}^{b} \{r_i^2 - (x - ..